
Blackbox JTAG Reverse Engineering
Felix Domke tmbinc@elitedvb.net

November, 27th 2009

Abstract
JTAG’s IEEE 1149.1 standard is a well-known
method to access on-chip scan chains for test-
mode functionality. But a large part of the
accessible test-modes are usually not docu-
mented. It will be shown that often these test-
modes can be reverse-engineered by looking at
the JTAG inputs and outputs. Undocumented
test-modes can be pretty powerful tools in gain-
ing “back door” access to a system.

1 Introduction
With the introduction of multi-layer circuit
boards and much finer pitches, having a de-
cent test coverage with a bed-of-nails type de-
vice got harder and harder. In the 1980’s Joint
Test Action Group, a group composed of several
electronic manufacturers, developed a solution
called IEEE 1149.1: Standard Test Access Port
and Boundary-Scan Architecture, often simpli-
fied just as JTAG. For the sake of readability,
we will use this acronym to refer to the actual
implementation.

JTAG is a standard that defines access to
test-mode functionality on an integrated cir-
cuit. While certain JTAG functionality, like
Boundary Scan, are widely documented[1],
JTAG often allows accessing functionality
much deeper inside the chip. Often, these test-
modes are undocumented to the general public,
even when signing NDAs. Nevertheless, they
are available and can be used once their func-
tionality is known.

This paper will first give an overview over
the basics to understand what JTAG actually
is. After that, methods to explore undocu-

mented functionality will be shown. Finally,
an example test-mode, which has been reverse-
engineered, will be shown and explained. In
this example, a test-mode was found that al-
lows reading and writing to memory in a 32 bit
address space of the device.

2 Basics
An IC implementing JTAG implements access
to several on-die scan chains, special regis-
ter used for testing, in a standardized way.
The content of these registers, however, are
(other than for a few exceptions) not part of
the standard. A scan chain is a shift regis-
ter with parallel load and store functionality.
Functionally, it can be described as a regis-
ter that can be read and written to, pretty
much like a memory-mapped register accessi-
ble from a CPU, although a scan chain has
some additional properties which can be help-
ful for reverse-engineering. Such a register can
have any number of bits, usually from 1 (like
BYPASS, see below) to several hundred (like a
Boundary Scan register).

JTAG defines a standardized way to ac-
cess the test registers using 4 special IO
pins (TMS, TCK, TDI, TDO, plus an optional
TRST)

By controlling TMS (while clocking TCK),
the test system can navigate in the JTAG
State Machine. The TMS pin is used to
determine which path the state machine will
move, whenever there is a raising edge on the
TCK pin. The optional TRST pin will bring
the state machine back into the initial Test
Logic Reset state (TLR), but the same effect
can be achieved by scanning in (at most) 5 ones.

1

2 BASICS 2

3-5

Test Access Port and Operation
The TAP is controlled by the test clock (TCK) and test mode
select (TMS) inputs. These two inputs determine whether an
instruction register scan or data register scan is performed.
The TAP consists of a small controller design, driven by the
TCK input, which responds to the TMS input as shown in the
state diagram in Figure 3-3. The IEEE Std 1149.1 test bus
uses both clock edges of TCK. TMS and TDI are sampled on
the rising edge of TCK, while TDO changes on the falling
edge of TCK.

Shift-DR

 1 0
 1

 0

 1 1

 0

 0

 1

 0

 0

 1

 1
 0 0

 0

 0

 1

 0

 0

 1

 1

 1 1

 0

 0

 0

 0

 1 1

 1 1

Note: The value shown adjacent to each state transition in this figure
represents the signal present at TMS at the rising edge of TCK.

Pause-DR

Update-DR

Test-Logic-Reset

Capture-DR Capture-IR

Shift-IR

Exit1-DR Exit1-IR

Pause-IR

Exit2-DR Exit2-IR

Update-IR

Select-DR-Scan Select-IR-ScanRun-Test/Idle

Figure 3-3. TAP Controller State Diagram
Figure 1: TAP Controller State Diagram[3,
Page 3-5]

Since TRST is level-low-active, TRST must not
be tied low to make the JTAG interface opera-
tional.

The state machine allows access to two spe-
cial registers, the IR (Instruction Register),
and a symbolic register called DR (Data Reg-
ister), which is a placeholder for to the regis-
ter that is currently selected with the current
content of the IR. Thus, IR is an index into
a number of registers, and DR is the cur-
rently selected register. The contents of IR are
also called instruction, even though selecting an
instruction will usually not directly trigger any
action, but merely select the proper register as
DR. The size of the IR is implementation spe-
cific, and usually varies between 4 and 32 bit.
Since the selected register is directly accessed
when scanning the DR, the size of the DR de-
pends on the current instruction.

When a scan chain is selected and the JTAG
state machine is in the shift state, the register
is connected between TDI and TDO pins.

The rightmost bit is connected to the TDO pin,
and on each TCK clock cycle, the register con-
tents will be shifted one bit to the right. The
TDI pin will be used as input for the leftmost
bit. Shifting a register is an inherent bidirec-
tional operation. For registers with a positional
notation, this means that scanning - both input
and output - will be done from LSB to MSB.

Since shifting a register will modify the con-
tent (due to the shifting), a scan chain is usu-
ally not directly connected to other logic, but
latched first. The Capture state is used to cap-
ture the current state of the logic into the scan
chain, and the Update state is used to update
the logic with the scan chain contents. The
JTAG state machine ensures that first the logic
register contents are latched into the scan chain
(Capture), then the scan chain can be read out
and modified (Scan), and finally, the updated
content will be written back (Update). Thus,
both capture and update are atomic opera-
tions.

The meanings of the referenced registers are
partially standardized; they are called public
registers, opposed to the implementation-
specific private registers.

The most basic public register is called
BYPASS. It is a single bit and doesn’t have any
functionality. It is used to daisy-chain multiple
ICs, each sharing the same TCK and TMS pins.
The JTAG state machines will be synchronized,
and the TDI and TDO lines are connected in
series, so whenever a register is scanned, all
ICs will appear as one big scan chain. Since
when scanning the instruction, all the IRs are
also chained, its possible to select a different
instruction on each IC. In order to just talk to
a specific ICs JTAG chain, all other ICs will be
placed in the BYPASS instruction. This means
that other than delaying the scan chain for one
cycle, nothing will happen (even on capture and
update). The BYPASS register is always acces-
sible with setting the instruction to all-ones.

Another register, which is technically op-
tional, but most of the time implemented is the
IDCODE register. It is 32bit in width, and
identifies the manufacturer and device using a
standardized code. The exact instruction to se-
lect this register is not standardized, but when-

3 EXPLORATION 3

ever the state machine is in the Test-Logic-
Reset state, the instruction will be loaded with
the IDCODE instruction. Thus, it’s possible to
read out the IDCODE value from a device by
going straight into the DR scan phase, with-
out ever modifying the instruction. By scan-
ning 32 bit at a time, it’s possible to identify
each individual chip in a daisy-chained opera-
tion. By determining the length of the com-
bined IDCODE registers, it’s also possible to
detect the number of devices in a chain.

3 Exploration
If absolutely no documentation is available
for a given target IC, the first thing to do is to
figure out the actual JTAG pins. Tools like
JTAG Finder[2] can be used for this.

To test whether the JTAG connection is
working ok, the IDCODE should be read.
This is easy, since it doesn’t involve scanning
the IR, and the IDCODE register has a fixed
size of 32 bit. If the IDCODE isn’t all-zero
or all-one and stable over multiple runs, this is
already a pretty good sign that the electrical
JTAG connection is working fine.

The next thing to determine is the number
of theoretically accessible registers, i.e. the
length of the IR. After that, each of the
indexable registers should be individually ex-
plored.

In order to determine the length of any
register (both of IR or individually selected
DR), the following algorithm can be used:

1. Go into the scan state for that register.

2. Scan in a large number of ones (i.e. set
TDI to high, toggle TCK). After some de-
lay, depending on the previous state of the
register, these ones should be shifted out
on TDO. Make sure that the whole regis-
ter is flooded with ones. Shifting in several
thousand ones is usually a sufficient num-
ber.

3. Scan in a single zero.

4. Clock TCK until that zero reaches TDO.
The number of clock cycles required (plus
one) will be the length of the register.

Some devices have IR of up to 32 bit. That
of course doesn’t mean that they implement 232

different registers - most of these are unused.
Unused registers usually behave like BYPASS,
i.e. as a function-less 1 bit register, or pro-
duce a static value at TDO. When exploring an
unknown chip, it’s usually a good idea to first
map the entire IR space, and determining a few
characteristics of each register. Most character-
istic is the length of the register. Other impor-
tant properties are if certain bits of a register
stays across an update/capture cycle, i.e. if
they are readable and writeable. Since access-
ing a register through the capture/scan/update
states is always a rewrite operation, read-only
access is not easily possible. Some chips im-
plement different instructions for reading and
writing of the same registers. Sometimes, an
additional bit in the DR will be used to deter-
mine if the register will be updated or not (in
the update-phase). Another scheme is to have a
scratch register, which will be transferred into
the final register once a certain command bit
(in the same or in another register) will be
toggled. These are implementation specific
behaviors that need to be determined. It is
hard to give a universal algorithm to deter-
mine these exact properties, so playing around
with registers to determine the behavior is usu-
ally the easiest way. Also, instructions next to
each other are often part of the same functional
block. For example, said command bits are usu-
ally directly next to the actual data register.

There are a few typical patterns. One is
the already-mentioned BYPASS instruction. It
will behave as a read/writeable 1 bit register.

Another typical pattern is a usually very
large (hundreds of bits) register. The same
length of register will usually appear for multi-
ple instructions, with different properties. This
is a sign that this is the boundary scan reg-
ister, used for the SAMPLE/PRELOAD, IN-
TEST and EXTEST instructions. Care must
be taken since they can override the output
pins of an IC, thus driving pins which might
not be configured as an output originally, po-
tentially conflicting with the output of another
chip. This will cause excess current, and might
even destroy the output driver of any of the two

4 REAL-WORLD EXAMPLE 4

chips. Fortunately, these instructions are often
documented, so it’s easy to avoid them.

Sometimes, register have a zero width.
That means that just selecting the instruction
itself or entering the update state of the DR
triggers an action. This behavior is common
for reset-style instruction, which will do a par-
tial or complete reset of the chip.

“Interesting” registers, for example those
used for bus read/write operations, usually
exist in a pattern of a few consecutive 32 bit
(sometimes a few bits more) registers. The
next section documents such a real-world ex-
ample. Extra bits are sometimes provided for
individual byte-lane write enables, or selection
of different address spaces.

Depending on the actual implementation, the
TLR state might actually reset part of the
test logic. For example, it might clear an ad-
dress register back to zero. This can be avoided
by not entering the TLR state when accesing
registers, but instead staying in the run test idle
mode. But observing changes in certain regis-
ters when going through the TLR state also
provides valuable information.

4 Real-World Example
On this example device, the JTAG port usu-
ally provides boundary scan functionality. No
further test-mode functionality could be found.
However, it was determined that when cer-
tain pins labeled as TMODEn would be pulled
into a configuration that was described as re-
served, the JTAG functionality would change
completely. While the original IR length was
32 bit (with most of the IR bits unused), when
entering the undocumented test mode, the IR
length did change to 5 bit, giving access to
a completely different test-mode functionality.
An automated length-scan over the 32 possible
instructions gave the following result:

IR Length
00: 4096+
01: 4096+
02: 4096+
03: 32
04: 4096+

05: 4096+
06: 1
07: 1
08: 32
09: 32
0a: 4
0b: 4096+
0c: 4096+
[...]
1d: 4096+
1e: 4096+
1f: 1

Clearly, instruction 0x1f (all-ones) is a BY-
PASS instruction, as required by the JTAG
specifications. This corresponds to the mea-
sured length of 1 bit. Unimplemented registers
are not implemented as BYPASS on this chip,
but give a static high level on TDO. This means
that the search operation to count the cycles
until TDO becomes 0 has timed out (in this
case after a maximum length of 4096), since
the register didn’t behave like a shift register
at all, so the input zero was never propagated
to the output. These instructions are uninim-
plemented, and can be ignored.

Instruction 3 was determined to be the ID-
CODE instruction, by first capturing the ID-
CODE (by going into the shift DR state with-
out modifying the instruction before), and then
comparing it with the value that can be scanned
out while selecting instruction 3. Also, this reg-
ister is 32 bit and completely read-only, and has
a stable and constant pattern, which is a good
sign for being the IDCODE register. Finally,
decoding the value according to the JTAG rules
did yield a plausible result.

Instructions 8 and 9 are interesting, because
they are 32 bit in size. Registers in this length
are often used for higher level tests, like access-
ing a memory bus, rather than low-level test-
modes, which individually connect to obscure
on-chip functionality. Instruction 8 was manu-
ally checked and found to be read/write, while
instruction 9 was found to be read-only.

For a busmaster capable test mode, usually
one or more registers are used to enter the ad-
dress, the data. Upon updating a separate com-
mand register, usually with a bit set to high, the

REFERENCES 5

transaction will be started. The exact seman-
tics are of course implementation specific, but
can usually be found with trial and error easily.

In this case, the semantics to do a busmaster
read transaction have been found out to be the
following:

1. Scan in the address into instruction 8

2. Toggle the rightmost bit in instruction 0xA
(i.e. scan in 0x0, then 0x1)

3. Scan out the data from instruction 9

A similar pattern was found to also do writes.
Certainly, the chip in question has a very sim-

ple accessible test-mode, and also the length
of the IR is pretty small. But the same tech-
nique have been successfully applied to chips
with a much larger IR and more complicated
test-mode functionality.

5 Conclusion
It has been shown that test-modes hidden in
ICs can be found and used, even when no doc-
umentation is available. Since test-mode func-
tionality is designed to provide broad test cov-
erage, a lot of functionality might be accessi-
ble. Once again, security by obscurity does not
work, and silicon designers need to be aware
that even hidden test-modes will ultimately be
discovered and abused by hackers.

References
[1] JTAG - Teach new tricks to your FPGA,

KNJN LLC., http://www.fpga4fun.com/
JTAG.html

[2] JTAG Finder, hunz, http://www.elinux.
org/JTAG˙Finder

[3] IEEE Std. 1149.1 (JTAG) Testabil-
ity, Primer, Texas Instruments http://
simplemachines.it/doc/jtag-tutorial.pdf

